MARC details
000 -LEADER |
fixed length control field |
11212nam a22002057a 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
VITAP |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20230323120913.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
230323b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9789353501839 |
040 ## - CATALOGING SOURCE |
Transcribing agency |
VITAP |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
Edition number |
23rd |
Classification number |
658.4034 DAH |
100 ## - MAIN ENTRY--PERSONAL NAME |
9 (RLIN) |
11150 |
Personal name |
Dahe, Prasanna Davidas |
245 ## - TITLE STATEMENT |
Title |
Operations Research : |
Remainder of title |
A System Engineering Approach / |
Statement of responsibility, etc. |
Prasanna Davidas Dahe |
260 ## - PUBLICATION, DISTRIBUTION, ETC. |
Place of publication, distribution, etc. |
Delhi |
Name of publisher, distributor, etc. |
Cengage Learning India Pvt. Ltd. |
Date of publication, distribution, etc. |
2019 |
300 ## - PHYSICAL DESCRIPTION |
Other physical details |
xvi, 445p. : ill. ; |
Dimensions |
24cm |
520 ## - SUMMARY, ETC. |
Summary, etc. |
It includes acknowledgement, appendix and index pages.<br/><br/>Overview:<br/><br/><br/>This book, intended for the course on operations research, is particularly useful for UG/PG degree programmes in engineering and computer applications and may also suit other streams such as management, sciences, etc. The content is designed to address the requirements of the engineering programmes in Indian universities. The systems engineering approach is unique and is expected to receive appreciation especially from the academic community. Operations research is related to the analytical part of systems engineering. This book discusses the operations research techniques using the fundamental concepts of systems engineering to make a difficult but important subject easy to understand. This course in systems engineering concepts coupled with the application of operations research techniques shall help engineers and managers to develop the viewpoint and tools necessary for handling real-life problems.<br/><br/>Difficult analytical techniques and mathematical procedures are explained from first principles assuming bare minimum pre-requisites, to encourage the learner and to make learning enjoyable. A step-by-step explanation presents the concepts and principles and a clear link is established to the already-digested concepts to keep the student involved.<br/><br/>Features:<br/><br/> Basic concepts of systems engineering integrated with operations research techniques to enhance real-life problem solving.<br/> Simple, everyday-life examples are used to facilitate a smooth transfer of knowledge in an interesting manner.<br/> High-quality diagrams illustrate the subject matter.<br/> A comprehensive collection of solved examples in a chronological order with increasing level of difficulty help to assimilate the concepts and induce problem-solving skills.<br/> Extensive end-of-chapter key concepts and exercises help to review the learning.<br/><br/>Table of Contents:<br/>PART I SYSTEMS ENGINEERING<br/><br/>1. Introduction to Systems Engineering<br/><br/>1.1 Background<br/><br/>1.2 Nature of Real-life Engineering Systems<br/><br/>1.3 Necessity, Significance, and Scope of Systems Engineering<br/><br/>1.4 Role of Systems Engineering<br/><br/>1.5 Justification for Systems Engineering<br/><br/>1.6 An Example: Proposal for Constructing a House for Oneself<br/><br/>2. The Concept of System<br/><br/>2.1 Introduction and Definition<br/><br/>2.2 System Concepts<br/><br/>2.3 Characteristics of a System<br/><br/>2.4 Examples of Systems<br/><br/>2.4.1 A Computer System<br/><br/>2.4.2 The Hydrologic Cycle<br/><br/>2.5 Types of Systems<br/><br/>2.6 Hierarchy of Systems<br/><br/>2.6.1 Subsystems and Suprasystems<br/><br/>2.7 Identification and Formulation of Systems<br/><br/>2.7.1 Building Systems from Subsystems<br/><br/>2.7.2 An Example<br/><br/>3. Systems Engineering<br/><br/>3.1 Introduction to Systems Engineering<br/><br/>3.1.1 Definition<br/><br/>3.2 Systems Approach and Systems Analysis<br/><br/>3.2.1 Systems Approach<br/><br/>3.2.2 Systems Analysis<br/><br/>3.3 System Models and Their Role<br/><br/>3.3.1 Models<br/><br/>3.3.2 Development of System Models<br/><br/>3.3.3 Role of System Models<br/><br/>3.3.4 Types of System Models<br/><br/>3.3.5 An Example<br/><br/>3.4 Examples: Informal Applications of Systems Engineering<br/><br/>4. Systems Analysis<br/><br/>4.1 Introduction<br/><br/>4.2 Systems Analysis Techniques<br/><br/>4.3 The Concept and Process of Optimization<br/><br/>4.4 Optimization by Method of Calculus<br/><br/>4.4.1 Function of a Single Variable<br/><br/>4.4.2 Function of Multiple Variables<br/><br/>4.4.3 Unconstrained Systems<br/><br/>4.4.4 Constrained Systems<br/><br/>4.5 Terminology and Definition of Terms<br/><br/>4.6 Non-linear Programming<br/><br/>PART II DETERMINISTIC MODELS<br/><br/>5. Linear Programming<br/><br/>5.1 Introduction<br/><br/>5.2 General Form of Linear Programming Model<br/><br/>5.3 Assumptions in Linear Programming<br/><br/>5.4 Solution of Linear Programming Models by Graphical Method<br/><br/>5.5 Solution of Linear Programming Models by Simplex Method<br/><br/>5.5.1 The Simplex Algorithm<br/><br/>5.6 Handling Artificial Variables: The Big-M and Two-phase Methods<br/><br/>5.6.1 The Big-M Method<br/><br/>5.6.2 The Two-phase Method<br/><br/>5.7 Introduction to the Theory of Duality<br/><br/>5.8 Applications of Linear Programming Models<br/><br/>5.9 Limitations of Linear Programming<br/><br/>5.10 Examples: Formulation of Linear Programming Problems<br/><br/>5.10.1 The Crop Planning Problem<br/><br/>5.10.2 The Product Mix Problem<br/><br/>6. Transportation, Transshipment, and Assignment Problems<br/><br/>6.1 Introduction<br/><br/>6.2 The Transportation Problem<br/><br/>6.2.1 Formulation and Discussion<br/><br/>6.2.2 Solution to the Transportation Problem<br/><br/>6.2.3 Transportation Algorithm: Finding the Initial Basic Feasible Solution<br/><br/>6.2.4 Transportation Algorithm: The Check for Optimality<br/><br/>6.2.5 Transportation Algorithm: Iterating the Algorithm<br/><br/>6.2.6 Degeneracy<br/><br/>6.2.7 Closure<br/><br/>6.2.8 Exercises<br/><br/>6.3 The Transshipment Problem<br/><br/>6.3.1 Steps in Solving the Transshipment Problem<br/><br/>6.3.2 Closure<br/><br/>6.3.3 Exercises<br/><br/>6.4 The Assignment Problem<br/><br/>6.4.1 The Hungarian Method<br/><br/>6.4.2 Algorithm for the Hungarian Method<br/><br/>6.4.3 Closure<br/><br/>6.4.4 Exercises<br/><br/>7. Dynamic Programming<br/><br/>7.1 Introduction<br/><br/>7.2 Approach and Methodology<br/><br/>7.3 Applications of Dynamic Programming<br/><br/>7.3.1 Shortest Route Problem 1<br/><br/>7.3.2 Shortest Route Problem 2<br/><br/>7.3.3 Shortest Route Problem 3<br/><br/>7.3.4 Resource Allocation Problem 1<br/><br/>7.3.5 Resource Allocation Problem 2<br/><br/>7.4 Curse of Dimensionality in Dynamic Programming<br/><br/>7.5 Formulation of Dynamic Programming Problems<br/><br/>8. Inventory Models<br/><br/>8.1 Introduction<br/><br/>8.2 Selective Inventory Control<br/><br/>8.2.1 ABC Analysis<br/><br/>8.2.2 VED Analysis<br/><br/>8.2.3 SDE Analysis<br/><br/>8.2.4 FSN Analysis<br/><br/>8.3 General Inventory Model<br/><br/>8.3.1 Inventory Parameters<br/><br/>8.3.2 Cost Considerations in Inventory Problem<br/><br/>8.3.3 Assumptions<br/><br/>8.4 Infinite Delivery Rate with No Backordering<br/><br/>8.4.1 Derivation of the Economic Order Quantity Formula<br/><br/>8.4.2 Price Breaks<br/><br/>8.5 Finite Delivery Rate with No Backordering<br/><br/>8.6 Infinite Delivery Rate with Backordering<br/><br/>8.7 Finite Delivery Rate with Backordering<br/><br/>9. Sequencing Models<br/><br/>9.1 Introduction<br/><br/>9.2 Elements and Assumptions<br/><br/>9.2.1 Elements of Sequencing Problems<br/><br/>9.2.2 Assumptions in Sequencing Problems<br/><br/>9.3 Processing N Jobs Through One Machine<br/><br/>9.4 Processing N Jobs Through Two Machines<br/><br/>9.5 Processing N Jobs Through Three Machines<br/><br/>PART III PROBABILISTIC MODELS<br/><br/>10. Probability Concepts and Forecasting Techniques<br/><br/>10.1 Introduction<br/><br/>10.2 Basic Concepts of Probability and Statistics<br/><br/>10.2.1 Probability of an Event<br/><br/>10.2.2 Random Variables<br/><br/>10.2.3 Discrete Random Variables<br/><br/>10.2.4 Important Probability Distributions of a Discrete Random Variable<br/><br/>10.2.5 Continuous Random Variables<br/><br/>10.2.6 Important Probability Distributions of Continuous Random Variables<br/><br/>10.3 Forecasting Techniques<br/><br/>10.3.1 Forecasting Process<br/><br/>10.3.2 Classification of Forecasting Techniques<br/><br/>10.3.3 Qualitative Forecasting Techniques<br/><br/>10.3.4 Quantitative Forecasting Techniques<br/><br/>10.3.5 Regression and Correlation Analysis<br/><br/>10.3.6 Accuracy and Control of Forecasts<br/><br/>11. Queuing Theory—Waiting Line Models<br/><br/>11.1 Introduction<br/><br/>11.2 Approaches to Resolve the Queuing Problem<br/><br/>11.3 Queuing Parameters<br/><br/>11.3.1 The Input Process<br/><br/>11.3.2 The Service Mechanism<br/><br/>11.3.3 Queue Discipline<br/><br/>11.3.4 Customer Behaviour<br/><br/>11.4 Assumptions, Concepts, and Definitions<br/><br/>11.4.1 Assumptions<br/><br/>11.4.2 Transient and Steady-state System<br/><br/>11.4.3 Traffic Intensity<br/><br/>11.4.4 The Queue System<br/><br/>11.4.5 Notation<br/><br/>11.4.6 Kendall’s Notation<br/><br/>11.4.7 Balance Diagram and Balance Equations<br/><br/>11.5 Queuing Model M/M/1/∞<br/><br/>11.6 Queuing Model M/M<br/><br/>11.7 Queuing Model M/M/s/∞<br/><br/>11.8 Queuing Model M/M/s/N<br/><br/>12. Replacement Models<br/><br/>12.1 Introduction<br/><br/>12.2 Replacement of Items that Deteriorate with Time<br/><br/>12.2.1 Time Value of Money is Not Considered<br/><br/>12.2.2 Time Value of Money is Considered<br/><br/>12.3 Replacement of Items that Fail Suddenly<br/><br/>12.4 Replacement Policies<br/><br/>12.4.1 Individual Replacement Policy<br/><br/>12.4.2 Group Replacement Policy<br/><br/>12.4.3 Mortality<br/><br/>12.4.4 Group Replacement<br/><br/>12.4.5 Preventive Replacement<br/><br/>13. Decision Theory and Games<br/><br/>13.1 Introduction<br/><br/>13.2 Decision-making Under Risk<br/><br/>13.2.1 Expected Value Criterion<br/><br/>13.2.2 Decision Procedure with Bayes Probabilities<br/><br/>13.3 Decision Trees<br/><br/>13.4 Decision-making Under Uncertainty<br/><br/>13.4.1 Maximax and Minimin Criteria<br/><br/>13.4.2 Minimax and Maximin Criteria<br/><br/>13.4.3 Laplace Criterion<br/><br/>13.4.4 Hurwicz Criterion<br/><br/>13.5 Game Theory—Competitive Strategy<br/><br/>13.5.1 Concepts and Terminology<br/><br/>13.5.2 Solution of Two-person Zero-sum Games with Pure Strategies<br/><br/>13.5.3 Mixed Strategies<br/><br/>14. Simulation<br/><br/>14.1 Introduction<br/><br/>14.2 The Concept of Simulation<br/><br/>14.2.1 Classification of Simulation Models<br/><br/>14.2.2 Advantages and Limitations of Simulation Models<br/><br/>14.2.3 Application of Simulation Models<br/><br/>14.3 Monte Carlo Simu<br/><br/>14.4 Examples of Monte Carlo Simulation<br/><br/>14.4.1 To Create Cumulative Probability of Demand Based on Normal Distribution<br/><br/>15. Project Management<br/><br/>15.1 Introduction<br/><br/>15.1.1 Cost of Delays in Implementation of Projects<br/><br/>15.1.2 Projects and the Planning Process<br/><br/>15.1.3 Project Life Cycle<br/><br/>15.1.4 Role of Project Management Techniques—Critical Path Method and Performance Evaluation and Review Technique<br/><br/>15.2 Principles of Network Technique<br/><br/>15.2.1 Activities and Events<br/><br/>15.2.2 Event and Activity Numbering<br/><br/>15.2.3 Developing a Network<br/><br/>15.3 Project Time Analysis for Network Techniques—Critical Path Method and Performance Evaluation and Review Technique<br/><br/>15.3.1 Activity Duration<br/><br/>15.3.2 Event Time and Activity Time<br/><br/>15.3.3 Time Analysis for a Project<br/><br/>15.3.4 Event Slack and Activity Float<br/><br/>15.3.5 Critical Path<br/><br/>15.4 Performance Evaluation and Review Technique<br/><br/>15.4.1 Performance Evaluation and Review Technique Statistics<br/><br/>15.4.2 Probability of Completing a Project on Schedule<br/><br/>15.4.3 Criticism of Performance Evaluation and Review Technique and Its Utility<br/><br/>15.5 Project Time–Cost Relationship<br/><br/>15.5.1 Shortening Project Duration<br/><br/>15.5.2 Activity Time–Cost relationship<br/><br/>15.5.3 Project Time–Cost Relationship<br/><br/>15.5.4 Time–Cost Trade-off Analysis<br/><br/>15.6 Resource Allocation and Scheduling<br/><br/>15.6.1 Project Resources<br/><br/>15.6.2 Resource Usage<br/><br/>15.6.3 Resources Smoothening<br/><br/>15.6.4 Resources Leveling<br/><br/>15.7 Project Scheduling and Monitoring<br/><br/>15.7.1 Methods for Scheduling<br/><br/>15.7.2 Presenting the Project Schedule<br/><br/>15.7.3 Monitoring and Control of a Project<br/> |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
9 (RLIN) |
11151 |
Topical term or geographic name entry element |
Operations research; Programming (Mathematics) |
856 ## - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
<a href="https://www.cengage.co.in/book-list/print/operations-research-a-systems-engineering-approach-on">https://www.cengage.co.in/book-list/print/operations-research-a-systems-engineering-approach-on</a> |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
Dewey Decimal Classification |
Koha item type |
Text Book |
Edition |
23rd |
Classification part |
658.4034 |
Call number suffix |
DAH |