Amazon cover image
Image from Amazon.com
Image from Google Jackets

Fog and Edge Computing : Principles and Paradigms / edited Rajkumar Buyya and Satish Narayana Srirama

Contributor(s): Material type: TextTextSeries: Wiley Series on Parallel and Distributed ComputingPublication details: Hoboken, New Jersy, USA, John Wiley & sons. Inc. 2019Description: xxvii, 471p. : ill. ; 23cmISBN:
  • 9781119524984
  • 9781119525080
Subject(s): DDC classification:
  • 23rd 004.6782 BUY
Online resources:
Contents:
Table of Contents List of Contributors xix Preface xxiii Acknowledgments xxvii Part I Foundations 1 1 Internet of Things (IoT) and New Computing Paradigms 3 Chii Chang, Satish Narayana Srirama, and Rajkumar Buyya 1.1 Introduction 3 1.2 Relevant Technologies 6 1.3 Fog and Edge Computing Completing the Cloud 8 1.3.1 Advantages of FEC: SCALE 8 1.3.2 How FEC AchievesThese Advantages: SCANC 9 1.4 Hierarchy of Fog and Edge Computing 13 1.5 Business Models 16 1.6 Opportunities and Challenges 17 1.7 Conclusions 20 References 21 2 Addressing the Challenges in Federating Edge Resources 25 Ahmet Cihat Baktir, Cagatay Sonmez, CemErsoy, Atay Ozgovde, and Blesson Varghese 2.1 Introduction 25 2.2 The Networking Challenge 27 2.3 The Management Challenge 34 2.4 Miscellaneous Challenges 40 2.5 Conclusions 45 References 45 3 Integrating IoT + Fog + Cloud Infrastructures: System Modeling and Research Challenges 51 Guto Leoni Santos,Matheus Ferreira, Leylane Ferreira, Judith Kelner, Djamel Sadok, Edison Albuquerque, Theo Lynn, and Patricia Takako Endo 3.1 Introduction 51 3.2 Methodology 52 3.3 Integrated C2F2T Literature by Modeling Technique 55 3.4 Integrated C2F2T Literature by Use-Case Scenarios 65 3.5 Integrated C2F2T Literature by Metrics 68 3.6 Future Research Directions 72 3.7 Conclusions 73 Acknowledgments 74 References 75 4 Management and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds 79 Adel Nadjaran Toosi, RedowanMahmud, Qinghua Chi, and Rajkumar Buyya 4.1 Introduction 79 4.2 Background 80 4.3 Network Slicing in 5G 83 4.4 Network Slicing in Software-Defined Clouds 87 4.5 Network Slicing Management in Edge and Fog 91 4.6 Future Research Directions 93 4.7 Conclusions 96 Acknowledgments 96 References 96 5 Optimization Problems in Fog and Edge Computing 103 Zoltán Ádám Mann 5.1 Introduction 103 5.2 Background / RelatedWork 104 5.3 Preliminaries 105 5.4 The Case for Optimization in Fog Computing 107 5.5 Formal Modeling Framework for Fog Computing 108 5.6 Metrics 109 5.6.5 Further Quality Attributes 112 5.7 Optimization Opportunities along the Fog Architecture 113 5.8 Optimization Opportunities along the Service Life Cycle 114 5.9 Toward a Taxonomy of Optimization Problems in Fog Computing 115 5.10 Optimization Techniques 117 5.11 Future Research Directions 118 5.12 Conclusions 119 Acknowledgments 119 References 119 Part II Middlewares 123 6 Middleware for Fog and Edge Computing: Design Issues 125 Madhurima Pore, Vinaya Chakati, Ayan Banerjee, and Sandeep K. S. Gupta 6.1 Introduction 125 6.2 Need for Fog and Edge Computing Middleware 126 6.3 Design Goals 126 6.4 State-of-the-Art Middleware Infrastructures 128 6.5 System Model 129 6.6 Proposed Architecture 131 6.7 Case Study Example 136 6.8 Future Research Directions 137 6.9 Conclusions 139 References 139 7 A Lightweight Container Middleware for Edge Cloud Architectures 145 David von Leon, LorenzoMiori, Julian Sanin, Nabil El Ioini, Sven Helmer, and Claus Pahl 7.1 Introduction 145 7.2 Background/RelatedWork 146 7.3 Clusters for Lightweight Edge Clouds 149 7.4 Architecture Management – Storage and Orchestration 152 7.5 IoT Integration 159 7.6 Security Management for Edge Cloud Architectures 159 7.7 Future Research Directions 165 7.8 Conclusions 166 References 167 8 Data Management in Fog Computing 171 Tina Samizadeh Nikoui, Amir Masoud Rahmani, and Hooman Tabarsaied 8.1 Introduction 171 8.2 Background 172 8.3 Fog Data Management 174 8.4 Future Research and Direction 186 8.5 Conclusions 186 References 188 9 Predictive Analysis to Support Fog Application Deployment 191 Antonio Brogi, Stefano Forti, and Ahmad Ibrahim 9.1 Introduction 191 9.2 Motivating Example: Smart Building 193 9.3 Predictive Analysis with FogTorch 197 9.4 Motivating Example (continued) 206 9.5 Related Work 207 9.6 Future Research Directions 214 9.7 Conclusions 216 References 217 10 Using Machine Learning for Protecting the Security and Privacy of Internet of Things (IoT) Systems 223 Melody Moh and Robinson Raju 10.1 Introduction 223 10.2 Background 234 10.3 Survey of ML Techniques for Defending IoT Devices 242 10.4 Machine Learning in Fog Computing 248 10.4.1 Introduction 248 10.5 Future Research Directions 252 10.6 Conclusions 252 References 253 Part III Applications and Issues 259 11 Fog Computing Realization for Big Data Analytics 261 Farhad Mehdipour, Bahman Javadi, AniketMahanti, and Guillermo Ramirez-Prado 11.1 Introduction 261 11.2 Big Data Analytics 262 11.3 Data Analytics in the Fog 267 11.4 Prototypes and Evaluation 272 11.4.1 Architecture 272 11.4.2 Configurations 274 11.5 Case Studies 277 11.6 Related Work 282 11.7 Future Research Directions 287 11.8 Conclusions 287 References 288 12 Exploiting Fog Computing in Health Monitoring 291 Tuan Nguyen Gia and Mingzhe Jiang 12.1 Introduction 291 12.2 An Architecture of a Health Monitoring IoT-Based System with Fog Computing 293 12.3 Fog Computing Services in Smart E-Health Gateways 297 12.4 System Implementation 304 12.5 Case Studies, Experimental Results, and Evaluation 308 12.6 Discussion of Connected Components 313 12.7 Related Applications in Fog Computing 313 12.8 Future Research Directions 314 12.9 Conclusions 314 References 315 13 Smart Surveillance Video Stream Processing at the Edge for Real-Time Human Objects Tracking 319 Seyed Yahya Nikouei, Ronghua Xu, and Yu Chen 13.1 Introduction 319 13.2 Human Object Detection 320 13.3 Object Tracking 327 13.4 Lightweight Human Detection 335 13.5 Case Study 337 13.6 Future Research Directions 342 13.7 Conclusions 343 References 343 14 Fog Computing Model for Evolving Smart Transportation Applications 347 M. Muzakkir Hussain,Mohammad Saad Alam, and M.M. Sufyan Beg 14.1 Introduction 347 14.2 Data-Driven Intelligent Transportation Systems 348 14.3 Mission-Critical Computing Requirements of Smart Transportation Applications 351 14.4 Fog Computing for Smart Transportation Applications 354 14.5 Case Study: Intelligent Traffic Lights Management (ITLM) System 359 14.6 Fog Orchestration Challenges and Future Directions 362 14.7 Future Research Directions 364 14.8 Conclusions 369 References 370 15 Testing Perspectives of Fog-Based IoT Applications 373 Priyanka Chawla and Rohit Chawla 15.1 Introduction 373 15.2 Background 374 15.3 Testing Perspectives 376 15.4 Future Research Directions 393 15.5 Conclusions 405 References 406 16 Legal Aspects of Operating IoT Applications in the Fog 411 G. Gultekin Varkonyi, Sz. Varadi, and Attila Kertesz 16.1 Introduction 411 16.2 RelatedWork 412 16.3 Classification of Fog/Edge/IoT Applications 413 16.4 Restrictions of the GDPR Affecting Cloud, Fog, and IoT Applications 414 16.5 Data Protection by Design Principles 425 16.6 Future Research Directions 430 16.7 Conclusions 430 Acknowledgment 431 References 431 17 Modeling and Simulation of Fog and Edge Computing Environments Using iFogSim Toolkit 433 Redowan Mahmud and Rajkumar Buyya 17.1 Introduction 433 17.2 iFogSim Simulator and Its Components 435 17.3 Installation of iFogSim 436 17.4 Building Simulation with iFogSim 437 17.5 Example Scenarios 438 17.6 Simulation of a Placement Policy 450 17.7 A Case Study in Smart Healthcare 461 17.8 Conclusions 463 References 464 Index 467
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Notes Date due Barcode
Reference Book VIT-AP Reference Reference 004.6782 BUY (Browse shelf(Opens below)) Not For Loan CSE 023606
Text Book VIT-AP General Stacks 004.6782 BUY (Browse shelf(Opens below)) Available CSE 023607
Text Book VIT-AP General Stacks 004.6782 BUY (Browse shelf(Opens below)) Available CSE 023608

it includes bibliographic references [464-465] and index

Table of Contents

List of Contributors xix

Preface xxiii

Acknowledgments xxvii

Part I Foundations 1

1 Internet of Things (IoT) and New Computing Paradigms 3
Chii Chang, Satish Narayana Srirama, and Rajkumar Buyya

1.1 Introduction 3

1.2 Relevant Technologies 6

1.3 Fog and Edge Computing Completing the Cloud 8

1.3.1 Advantages of FEC: SCALE 8

1.3.2 How FEC AchievesThese Advantages: SCANC 9

1.4 Hierarchy of Fog and Edge Computing 13

1.5 Business Models 16

1.6 Opportunities and Challenges 17

1.7 Conclusions 20

References 21

2 Addressing the Challenges in Federating Edge Resources 25
Ahmet Cihat Baktir, Cagatay Sonmez, CemErsoy, Atay Ozgovde, and Blesson Varghese

2.1 Introduction 25

2.2 The Networking Challenge 27

2.3 The Management Challenge 34

2.4 Miscellaneous Challenges 40

2.5 Conclusions 45

References 45

3 Integrating IoT + Fog + Cloud Infrastructures: System Modeling and Research Challenges 51
Guto Leoni Santos,Matheus Ferreira, Leylane Ferreira, Judith Kelner, Djamel Sadok, Edison Albuquerque, Theo Lynn, and Patricia Takako Endo

3.1 Introduction 51

3.2 Methodology 52

3.3 Integrated C2F2T Literature by Modeling Technique 55

3.4 Integrated C2F2T Literature by Use-Case Scenarios 65

3.5 Integrated C2F2T Literature by Metrics 68

3.6 Future Research Directions 72

3.7 Conclusions 73

Acknowledgments 74

References 75

4 Management and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds 79
Adel Nadjaran Toosi, RedowanMahmud, Qinghua Chi, and Rajkumar Buyya

4.1 Introduction 79

4.2 Background 80

4.3 Network Slicing in 5G 83

4.4 Network Slicing in Software-Defined Clouds 87

4.5 Network Slicing Management in Edge and Fog 91

4.6 Future Research Directions 93

4.7 Conclusions 96

Acknowledgments 96

References 96

5 Optimization Problems in Fog and Edge Computing 103
Zoltán Ádám Mann

5.1 Introduction 103

5.2 Background / RelatedWork 104

5.3 Preliminaries 105

5.4 The Case for Optimization in Fog Computing 107

5.5 Formal Modeling Framework for Fog Computing 108

5.6 Metrics 109

5.6.5 Further Quality Attributes 112

5.7 Optimization Opportunities along the Fog Architecture 113

5.8 Optimization Opportunities along the Service Life Cycle 114

5.9 Toward a Taxonomy of Optimization Problems in Fog Computing 115

5.10 Optimization Techniques 117

5.11 Future Research Directions 118

5.12 Conclusions 119

Acknowledgments 119

References 119

Part II Middlewares 123

6 Middleware for Fog and Edge Computing: Design Issues 125
Madhurima Pore, Vinaya Chakati, Ayan Banerjee, and Sandeep K. S. Gupta

6.1 Introduction 125

6.2 Need for Fog and Edge Computing Middleware 126

6.3 Design Goals 126

6.4 State-of-the-Art Middleware Infrastructures 128

6.5 System Model 129

6.6 Proposed Architecture 131

6.7 Case Study Example 136

6.8 Future Research Directions 137

6.9 Conclusions 139

References 139

7 A Lightweight Container Middleware for Edge Cloud Architectures 145
David von Leon, LorenzoMiori, Julian Sanin, Nabil El Ioini, Sven Helmer, and Claus Pahl

7.1 Introduction 145

7.2 Background/RelatedWork 146

7.3 Clusters for Lightweight Edge Clouds 149

7.4 Architecture Management – Storage and Orchestration 152

7.5 IoT Integration 159

7.6 Security Management for Edge Cloud Architectures 159

7.7 Future Research Directions 165

7.8 Conclusions 166

References 167

8 Data Management in Fog Computing 171
Tina Samizadeh Nikoui, Amir Masoud Rahmani, and Hooman Tabarsaied

8.1 Introduction 171

8.2 Background 172

8.3 Fog Data Management 174

8.4 Future Research and Direction 186

8.5 Conclusions 186

References 188

9 Predictive Analysis to Support Fog Application Deployment 191
Antonio Brogi, Stefano Forti, and Ahmad Ibrahim

9.1 Introduction 191

9.2 Motivating Example: Smart Building 193

9.3 Predictive Analysis with FogTorch 197

9.4 Motivating Example (continued) 206

9.5 Related Work 207

9.6 Future Research Directions 214

9.7 Conclusions 216

References 217

10 Using Machine Learning for Protecting the Security and Privacy of Internet of Things (IoT) Systems 223
Melody Moh and Robinson Raju

10.1 Introduction 223

10.2 Background 234

10.3 Survey of ML Techniques for Defending IoT Devices 242

10.4 Machine Learning in Fog Computing 248

10.4.1 Introduction 248

10.5 Future Research Directions 252

10.6 Conclusions 252

References 253

Part III Applications and Issues 259

11 Fog Computing Realization for Big Data Analytics 261
Farhad Mehdipour, Bahman Javadi, AniketMahanti, and Guillermo Ramirez-Prado

11.1 Introduction 261

11.2 Big Data Analytics 262

11.3 Data Analytics in the Fog 267

11.4 Prototypes and Evaluation 272

11.4.1 Architecture 272

11.4.2 Configurations 274

11.5 Case Studies 277

11.6 Related Work 282

11.7 Future Research Directions 287

11.8 Conclusions 287

References 288

12 Exploiting Fog Computing in Health Monitoring 291
Tuan Nguyen Gia and Mingzhe Jiang

12.1 Introduction 291

12.2 An Architecture of a Health Monitoring IoT-Based System with Fog Computing 293

12.3 Fog Computing Services in Smart E-Health Gateways 297

12.4 System Implementation 304

12.5 Case Studies, Experimental Results, and Evaluation 308

12.6 Discussion of Connected Components 313

12.7 Related Applications in Fog Computing 313

12.8 Future Research Directions 314

12.9 Conclusions 314

References 315

13 Smart Surveillance Video Stream Processing at the Edge for Real-Time Human Objects Tracking 319
Seyed Yahya Nikouei, Ronghua Xu, and Yu Chen

13.1 Introduction 319

13.2 Human Object Detection 320

13.3 Object Tracking 327

13.4 Lightweight Human Detection 335

13.5 Case Study 337

13.6 Future Research Directions 342

13.7 Conclusions 343

References 343

14 Fog Computing Model for Evolving Smart Transportation Applications 347
M. Muzakkir Hussain,Mohammad Saad Alam, and M.M. Sufyan Beg

14.1 Introduction 347

14.2 Data-Driven Intelligent Transportation Systems 348

14.3 Mission-Critical Computing Requirements of Smart Transportation Applications 351

14.4 Fog Computing for Smart Transportation Applications 354

14.5 Case Study: Intelligent Traffic Lights Management (ITLM) System 359

14.6 Fog Orchestration Challenges and Future Directions 362

14.7 Future Research Directions 364

14.8 Conclusions 369

References 370

15 Testing Perspectives of Fog-Based IoT Applications 373
Priyanka Chawla and Rohit Chawla

15.1 Introduction 373

15.2 Background 374

15.3 Testing Perspectives 376

15.4 Future Research Directions 393

15.5 Conclusions 405

References 406

16 Legal Aspects of Operating IoT Applications in the Fog 411
G. Gultekin Varkonyi, Sz. Varadi, and Attila Kertesz

16.1 Introduction 411

16.2 RelatedWork 412

16.3 Classification of Fog/Edge/IoT Applications 413

16.4 Restrictions of the GDPR Affecting Cloud, Fog, and IoT Applications 414

16.5 Data Protection by Design Principles 425

16.6 Future Research Directions 430

16.7 Conclusions 430

Acknowledgment 431

References 431

17 Modeling and Simulation of Fog and Edge Computing Environments Using iFogSim Toolkit 433
Redowan Mahmud and Rajkumar Buyya

17.1 Introduction 433

17.2 iFogSim Simulator and Its Components 435

17.3 Installation of iFogSim 436

17.4 Building Simulation with iFogSim 437

17.5 Example Scenarios 438

17.6 Simulation of a Placement Policy 450

17.7 A Case Study in Smart Healthcare 461

17.8 Conclusions 463

References 464

Index 467

There are no comments on this title.

to post a comment.

Visitor Number:

Powered by Koha