000 | 02129cam a2200397 i 4500 | ||
---|---|---|---|
001 | 19134018 | ||
003 | VITAP | ||
005 | 20250225182326.0 | ||
008 | 160613t20162016maua b 001 0 eng | ||
010 | _a 2016022992 | ||
020 | _a9780262035613 (hardcover : alk. paper) | ||
020 | _a0262035618 (hardcover : alk. paper) | ||
040 |
_aDLC _beng _cVITAP _erda _dDLC |
||
042 | _apcc | ||
050 | 0 | 0 |
_aQ325.5 _b.G66 2016 |
082 | 0 | 0 |
_a006.31 GOO _223rd |
100 | 1 |
_aGoodfellow, Ian, _eauthor. |
|
245 | 1 | 0 |
_aDeep learning / _cIan Goodfellow, Yoshua Bengio, and Aaron Courville. |
250 | _a1st ed. | ||
264 | 1 |
_aCambridge, Massachusetts : _bThe MIT Press, _c[2017] |
|
264 | 4 | _c©2016 | |
300 |
_axxii, 775 pages : _billustrations (some color) ; _c24 cm. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
490 | 0 | _aAdaptive computation and machine learning | |
504 | _aIncludes bibliographical references (pages 711-766) and index. | ||
505 | 0 | _aApplied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models. | |
650 | 0 | _aMachine learning, | |
700 | 1 |
_aBengio, Yoshua, _eauthor. |
|
700 | 1 |
_aCourville, Aaron, _eauthor. |
|
856 | _uhttps://mitpress.mit.edu/9780262035613/deep-learning/ | ||
906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK _e23rd _h006.31 _mGOO |
||
999 |
_c46205 _d46205 |